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We visualize entanglements in polymer melts using molecular dynamics simulation. A bead at an entangle-
ment interacts persistently for long times with the nonbonded beads(those excluding the adjacent ones in the
same chain). The interaction energy of each bead with the nonbonded beads is averaged over a time intervalt
much longer than microscopic times but shorter than the onset time of tube constraintste. Entanglements can
then be detected as hot spots consisting of several beads with relatively large values of the time-averaged
interaction energy. We next apply a shear flow with rate much faster than the disengagement motion of
entangled chains. With increasing strain the chains take zigzag shapes and one-half of the hot spots become
bent. The chains are first stretched as a network but, as the bends approach the chain ends, disentanglements
subsequently occur, leading to stress overshoot observed experimentally.
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I. INTRODUCTION

The dynamics of dense polymer melts has been a chal-
lenging subject in current polymer physics[1–5]. While the
near-equilibrium dynamics of short chains withN,Ne can
be reasonably well described by the simple Rouse model, the
dynamics of very long chains withN.Ne has not yet been
well understood on the microscopic level, since it is gov-
erned by complicated entanglement effects. HereN is the
polymerization index or the bead number of a chain, andNe
is the average bead number between consecutive entangle-
ments. The reptation theory[2–8] is the most successful ap-
proach to date in describing the dynamics of entangled poly-
mer chains in a surprisingly simple manner. It assumes that
entanglements form continuous “tubes” through which the
chains reptate. Its predictions have been confirmed by a
number of experimental[9,10] and numerical[11–21] pa-
pers, where experimentally accessible quantities such as the
stress relaxation functionGstd, the incoherent dynamic scat-
tering function, the mean square displacement, and the vis-
cosity have been compared with the theoretical predictions
[3]. However,Ne estimated from the mean square displace-
ment and that from the plateau modulus were around 30 and
70, respectively[14], where the difference of these two esti-
mations indicates inaccuracy of the prefactors in the pre-
dicted formulas[3,22]. These simulations were not direct
observations of entanglements, but rather confirmed the ex-
istence of the entanglement effects indirectly using the for-
mulas of the reptation theory. Measurements of the dynamic
structure factorSsk,td by the neutron spin-echo method[9]
gave information of the tube diameter~Ne

1/2 in the reptation
theory and the resultantNe was consistent with the estimated
value from the plateau modulus(both being of order 100).

Understanding macroscopic rheological properties of
polymer melts in terms of microscopic molecular dynamics
is also of great importance, where the mechanism of shear-
thinning behavior is very different depending on whether
N,Ne or N.Ne and whether the glass transition is ap-
proached or not. Though still inadequate, extensive simula-
tions have been performed in this direction[16–19,23–25].

Entanglements are discrete objects severely constraining
the chain motions(only through “tubes” in the reptation
theory). However, the exact nature of entanglements is still
unclear and it is highly nontrivial how to detect them “di-
rectly” in simulations. Therefore, it is at present impossible
to determineNe “precisely” from simulations. We also point
out that the reptation theory does not provide the scaling
functions of the physical quantities applicable even for not
large N/Ne. The main aim of this paper is hence to give
attempts to identify and visualize the entanglements on the
microscopic level. Here we mention related simulations.
Ben-Naim et al. [26] could visualize individual entangle-
ments using the fact that incidental contacts of the particles
and entanglement contacts behave differently because en-
tanglement constraints are long lived. Gao and Weiner intro-
duced a time-averaged atomic mobility and found that intra-
chain atoms of relatively low mobility tend to cluster in
group along the chain forN=200, which suggests the exis-
tence of entanglements[15]. In the recent Kröger and Hess
simulation for 10øNø400 [18], the zero-shear viscosityh
(obtained at extremely weak shear) changed over from the
behaviorh~N to the behaviorh~Na with a in the range of
3 and 3.5 aroundN=Nc,100. This crossover polymeriza-
tion indexNc should be comparable toNe but they did not set
Nc/Ne=1, probably because of the lack of the theoretical
scaling formula h=NfvissN/Ned describing the Rouse-to-
reptation crossover as a function ofN/Ne. In a similar simu-
lation, Aoyagi and Doi[19] calculated the steady state vis-
cosity and normal stress differences to examine nonlinear
rheology forN=100,200, and 400. In Table I, we summarize
the simulations of freely jointed bead-spring(Kremer-Grest
type) chains. The estimated values ofNe are only crude ones.
Except for ours in this paper, they were obtained indirectly
by fitting of numerical data to the predictions[22]. At present
it is still difficult to perform sufficiently large simulations
with N@Ne.

The organization of this paper is as follows. In Sec. II A
our model system and our numerical method will be ex-
plained. In Sec. II B, in the rangeN=10–250, we will ex-
amine the time-correlation function of the end-to-end vector
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Cstd, the stress relaxation functionGstd, the zero-shear vis-
cosity obtained fromh=e0

`dt Gstd, and the diffusion con-
stantD. These data will indicateNe,100 with the aid of the
reptation theory in agreement with the previous simulations.
The rheological crossover from the Newtonian to shear-
thinning behavior will also be examined for variousN as in
the work by Aoyagi and Doi[19]. We here stress thatGstd
exhibits multiscale relaxations over many decades in chain
systems and its numerical calculation has been rare because
it requires very long simulations[20,21,24,25]. We will then
present time-averaging methods of detecting entanglements
in quiescent states in Sec. II C and in rapidly sheared states
in Sec. II D. Our “direct” observations of entanglements will
again giveNe,100 and enable us to examine how the stress
overshoot and chain stretching occur in transient states
[6,27,28].

II. NUMERICAL SECTION

A. Model

We used the bead-spring model[11] for our polymer
melts composed ofM chains withN particles or beads in a
cubic box with volumeV. The total particle numberNM was
1000 forN=10,25, and 100, and was increased to 2500 for
N=250. All the particle pairs interact via a truncated
Lennard-Jones potential defined by[11]

ULJsrd = 4efss/rd12 − ss/rd6g + e. s1d

The right-hand side is minimum atr =21/6s and the potential
is truncated(or zero) for largerr. Using the repulsive part of
the Lennard-Jones potential only in this manner, we may
prevent spatial overlap of the particles[11]. The number den-
sity was fixed atn=NM /V=1/s3, and the temperature was

kept atT=e /kB. At this temperature there was no glasslike
enhancement of the structural relaxation time, but atT
=0.2e /kB the present model withN=10 became glassy in our
previous simulation[24]. Note that our density value is
higher than the widely used valuen=0.85/s3 in the previous
simulations [11,14,16–19,26]. (With increasingn the free
volume for particles decreases and henceNe in our case
should be somewhat shorter than in the previous simula-
tions.) The consecutive beads on each chain are connected by
an anharmonic spring potential of the form

UFENEsrd = − 1
2kcR0

2 lnf1 − sr/R0d2g, s2d

where kc=30e /s2 and R0=1.5s. The bonded pairs in the
same chain thus interact via the sum of the two potentials,
UTsrd=ULJsrd+UFENEsrd, which has a deep minimum atr
=bmin=0.96s. In our simulations the actual bond lengths be-
tween two consecutive beads remained very close tobmin
with deviations being at most a few % ofbmin even under
rapid shearing. In fact, the expansionUTsrd−UTsbmind
>478esr /bmin−1d2 follows around the minimum, so the
deviation of this potential from the minimum value becomes
of order e even for r −bmin,0.04s. [This means that the
thermal fluctuation of the bond lengths is of order
0.04sskBT/ed1/2.] Hereafter we will measure space and time
in units of s andt0=sms2/ed1/2, respectively, withm being
the particle mass, unless confusion may occur. We numeri-
cally solved Newton’s equations of motion and took data
after long equilibration periods of order 106s=53108Dtd.

In quiescent cases, we imposed the microcanonical con-
dition with time stepDt=0.005 under the periodic boundary
condition. In the presence of shear flow, we setDt=0.0025
and kept the temperature ate /kB using the Gaussian con-
straint thermostat to eliminate viscous heating[29,30]. After

TABLE I. Summary of simulations of freely jointed chains. The second column shows the chain length in the simulations. The third and
fourth columns show the system sizeV1/3 and the simulation timetmax in units of the chain dimensionbN1/2 and the Rouse timet0N

2. In the
fifth to tenth columns the estimated values ofNe are given(if estimated).

Refs. N V1/3/bN1/2 tmax/t0N
2 Ne

a Ne
b Ne

c Ne
d Ne

e Ne
f

KG1990 [11] 200 0.9 1.5 120 35 34–50 60

KLH1993 [16] 300 1.5 s,11dg 100

GW1995[15] 200 0.9 0.3

BGWB1996[26] 350 1.9 1.8

AD2000 [19] 400 0.6 0.4

PKG2000[14] 350 1.5 8.2

700 1.9 0.2 32–35

10000 0.7 0.0002 28–32 65–83

KH2000 [18] 400 2.7 s,18dg 100

Present study 250 0.7 80 100 100 100 90

aFrom center-of-mass diffusion.
bFrom monomer diffusion.
cFrom scattering function.
dFrom stress relaxation function.
eFrom zero-shear viscosity.
fFrom direct visualizations.
gEstimated from the data given in Refs.[16] and [18].
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a long equilibration period in a quiescent state in the time
region t,0, all the particles acquired a velocityġy in the x
direction att=0, and then the Lee-Edwards boundary condi-
tion [29,30] maintained the simple shear flow. The periodic
boundary condition was imposed in thex direction. Steady
sheared states were realized after transient behavior.

For the caseN=250 the system lengthV1/3 is 25001/3

>14, which is of the same order as the end-to-end distance
of the chainss.bN1/2d. For such a small system size under
the periodic boundary condition, however, it is not clear how
accurately we can simulate the dynamics of real entangled
polymers. In future work, simulations are desirable in larger
systems where bothN@Ne and V1/3@sN1/2 are well
satisfied.

B. Crossover from Rouse to reptation dynamics

First we show that our numerical results near equilibrium
are consistent with the Rouse or reptation theory[3]. In Fig.
1, for variousN on a semilogarithmic scale, we show the
normalized time-correlation function of the end-to-end vec-
tor P=RN−R0,

Cstd = kPst + t0d ·Pst0dl/kuPst0du2l s3d

which is normalized such thatCs0d=1. Here, because of the
finite size of our system, the denominator and numerator on
the right-hand side remain to be considerably dependent on
t0 even after taking the averages over all the chains[31].
Thus they were also averaged over the initial timet0. The
statistical(temperature-dependent) bond lengthb is defined
by

kuPst0du2l = sN − 1db2. s4d

In the present caseb is equal to 1.25s. This value is slightly
shorter thanb.1.3s obtained by Kremer and Grest[11] for
n=0.85/s3 but of course longer than the actual bond lengths
ub ju= uR j+1std−R jstdu>bmins=0.96sd, where bmin was intro-
duced below Eq.(2) [32]. For this time-correlation function
both the Rouse dynamics and the reptation dynamics predict
the same simple functional form[3]. For N@1 it is a scaling
function of t /tr in terms of a relaxation timetr as

Cstd = o
odd p

8

p2p2exps− p2t/trd, s5d

where the summation is over oddp and 1øpøN−1. Since
the first termsp=1d in the summation is dominant for anyt,
this function decays nearly exponentially andtr may be de-
termined from Cstrd>e−1. As shown in Fig. 1, forN
=10,25,100 and 250, we obtained

tr = 270,1850,4.63 104,6 3 105 s6d

or tr /N
2=2.7,3.0,4.6, and 9.6, respectively. The calculated

curve forN=100 can be excellently fitted to the theoretical
functionCstd in Eq. (5). For the other values ofN the devia-
tion is at most of order 4% aroundt,0.1tr. However, at
long timest*tr, good agreement between the calculated and
theoretical curves was obtained for anyN.

Theoretically[3], the relaxation timetr should be equal to
the Rouse relaxation time

tR = t01N
2 s7d

for N!Ne and to the reptation or disentanglement time[3]

td = t018 N3/Ne s8d

for N@Ne. Here t01=zb2/3p2kBT and t018 =zb2/p2kBT in
terms of the monomeric friction constantz and the bond
lengthb in Eq. (4). If z andb are assumed to be independent
of N, the theory predicts

t018 = 3t01, td/tR = 3N/Ne. s9d

It has been argued that the Rouse timetR has a well-defined
physical meaning even in the reptation regime as the relax-
ation time of the chain contour in a tube[3,6,7].

For N=10, the Rouse dynamics should be valid andtr
=tR should hold, so our data ofb andtr yield

t01 > 2.7, zb2/kBT > 80. s10d

If the Rouse dynamics was assumed also forN=25, z
was increased by 10%, while a larger increase of 20% was
reported forN=10 andN=20 in Ref. [11]. In this paper
we used the value ofz determined forN=10. Our value of
z is about twice larger than in the previous simulations with
ns3=0.85 (see Ref.[14]). We then discuss the case ofN
=250, for which our data givetr /tR,4.63104/ s0.027
32502d>3.6 and the theoretical results in Eq.(9) give
td/tR=750/Ne. In this paper(from Figs. 2, 5–7, and 10 be-
low), we will obtain Ne,100, which then yieldstd/tR
,7.5 andtd/tr ,7.5/3.6,2. Thus there arises a difference
of a factor 2 between the theoreticaltd and the numerically

FIG. 1. The normalized time-correlation functionCstd for the
end-to-end vectors in Eq.(3) for variousN (solid lines) on a semi-
logarithmic scale. They can be fitted to the theoretical expression in
Eq. (5) (dashed lines). The arrows indicate the terminal relaxation
time tr defined byCstrd=e−1, which is the Rouse relaxation timetR

or the reptation timetd depending on whetherN!Ne or N@Ne.
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obtainedtr. It could stem from two possible origins. One is
that the Rouse-to-reptation crossover has not yet been well
realized forN=250,2.5Ne. The other is that the prefactors
in the reptation theory are inaccurate as suggested by Pützet
al. for large N [14]. These seem to be both relevant in the
present work.

In Fig. 2, we show our numerical data of the stress relax-
ation function forN=25 and 250 expressed by

Gstd = skBTd−1Vksxyst + t0dsxyst0dl, s11d

whereV is the system volume and the tensorsabstd is de-
fined by [16,17,24]

V−1E dr Pabsr ,td = pstddab − sabstd s12d

in terms of the microscopic stress tensorPabsr ,td. The pres-
sure pstd may be defined such thatsabstd is traceless or
deviatoric. See Refs.[16,17,24] for the microscopic expres-
sion of sabstd. The curve for the short chain caseN=25 and
M =40 is a result of the averages over 10 independent runs
and over the initial timet0. For t*10 it can be excellently
fitted to the Rouse relaxation function(left dotted line) [3],

GRstd =
nkBT

N
o
p=1

N−1

exps− p2t/t01N
2d, s13d

wheret01=2.7 as determined in Eq.(10). However, for the
longest chain caseN=250 andM =10, Gstd was calculated
from a single very long run performed up tot=53106

=109Dt with the average overt0 being taken. For 10& t
&103, it agrees withGRstd (right dotted line), but in the
terminal time ranget*tr =63105 the calculatedGstd re-
laxes much slower than predicted by the Rouse dynamics. In
Fig. 2, although the characteristic plateau behavior forN
@Ne is not clearly seen, we draw the theoretical stress relax-
ation functionGrepstd given by [3]

Grepstd =
3nkBT

5Ne
Cstd s14d

with Ne=100 (dashed line), whereCstd is defined in Eq.(5).
The agreement appears to be fair fort*105, but due to the
noisy behavior and the absence of well-defined plateau in
Gstd, we may claim only thatNe is in the range 70&Ne

&150 from the fitting. Note that the value oftr at N=250
used forCstd in Eq. (14) is obtained from Fig. 1 or Eq.(6).

Further remarks regarding Fig. 2 are as follows.(i) First,
the initial valueGs0d=Vksxy

2 l /kBT takes a very large value
about 92(not seen in Fig. 2) and is nearly independent ofN.
Because the initial values ofGRstd and Grepstd are much
smaller as GRs0d>nkBT,1 and Greps0d>3nkBT/5Ne

,0.25, agreement ofGstd with these model relaxation func-
tions is attained only after transient relaxations[33]. As re-
ported previously[20,24], the high-frequency vibration of
the bond lengths(with period 0.14 here) gives rise to initial
oscillatory behavior inGstd at short timesst&1d [34]. (ii )
Second, we notice marked noisy behavior of the curves in
Fig. 2 for t* tr as already reported in Refs.[20,24]. For such
large time separation, the correlation of order 10−4 of the
initial value needs to be picked up, while the amplitude of
the thermal fluctuations ofsxystd at each timet is given by

sfl = fksxystd2lg1/2 , fGs0dkBT/Vg1/2. s15d

This quantity is of orders92/2500d1/2,0.2 for the case of
N=250 in the dimensionless units[24]. The noisy behavior
in Gstd in the terminal time range can in principle be elimi-
nated only if the system size is very large and/or many runs
are performed.

In Fig. 3, we summarize our results of the relaxation time
tr, the zero-frequency shear viscosityh=e0

`dt Gstd in the
linear regime, and the diffusion constantD, as functions of
N. Hereh~N in the Rouse dynamics andh~N3/Ne

2 in the
reptation dynamics. The diffusion constant was obtained
from the relation

kuDRGstdu2l = 6Dt, s16d

where t.tr and DRGstd=RGst0+ td−RGst0d is the displace-
ment vector of the center of mass of the chains in a
time interval ft0,t+ t0g with width t. At the end of the
runs, the mean square displacement much exceedskuPst0du2l
in Eq. (4) for Nø100, but is only 1.5 times larger for

FIG. 2. The stress relaxation functionGstd for N=25 and 250
(solid lines) in units of es−3. Its N dependence is weak fort&102

but becomes increasingly stronger at later times. ForN=25 the
curve of Gstd can well be fitted to the Rouse relaxation function
GRstd with t01=2.7 andN=25 in Eq.(10) (left dotted line). For N
=250, it can be fitted to the reptation relaxation functionGrepstd in
Eq. (14) for t*tr (dashed line), wheretr =63105 in Cstd and Ne

=100 in the prefactor. For comparison we also showGRstd with
t01=2.7 andN=250 (right dotted line). It much deviates from the
calculated curve ofGstd of N=250 for t*104, while they agree
fairly well for 10& t&103.
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N=250. It is known thatD~N−1 in the Rouse dynamics and
D~Ne/N2 in the reptation dynamics[3]. In Fig. 3 we can
see that the dynamics of our system cannot be described by
the Rouse dynamics with increasingNs*100d. Though the
largestNs=250d is only 2.5 times larger than our estimated
Ne, the N dependencies in Fig. 3 are consistent with the
crossover from the Rouse to reptation dynamics reported in
the previous simulations[11–14,16–18].

We also show that our model polymer melts exhibit
strongly nonlinear behavior forġ.tr

−1. Figure 4 displays the
steady-state shear viscosityh in (a) and the steady-state
normal-stress differenceN1 in (b), where

hsġd = ksxyl/ġ, N1sġd = ksxxl − ksyyl. s17d

Here the stress components consist of the contributions from
all the particles as defined by Eq.(12) and we took the time
averageksi jst0dl over t0 within an interval with width 200.
The vertical (solid) arrows indicate the points at whichġ
=tr

−1. For ġ,tr
−1, the system shows Newtonian behavior,

and h converges to the zero shear viscosity,h=e0
`dt Gstd,

indicated with the horizontal(dotted) arrows in Fig. 4(a). On
the other hand,hsġd at high shear is nearly independent ofN
in agreement with rheology experiments[1,7,35] and the
previous simulations[16–19], while N1sġd is an increasing
function ofN at any shear rate. If the data ofN=100 and 250
at high shear are fitted to power laws, we roughly obtain
hsġd, ġ−a and N1sġd, ġa1Nc1 with a,0.7, a1,0.5, and
c1,1.0. The second normal stress differenceN2sġd=ksyyl
−kszzl (not shown here) was smaller thanN1sġd by about
two orders of magnitude at any shear rates. In the literature
[3,6,7], it has been argued that the relaxation of the chain
contours occurs on the time scale oftR and is of crucial
importance in nonlinear rheology under rapid deformations.
In our case, however, Fig. 1 shows that the ratiotr /tR is only
about 3.6 even forN=250, so we cannot draw definite con-
clusions on the overall nonlinear rheology.

C. Entanglements in quiescent states

For the longest chain caseN=250, we attempt to identify
and visualize entanglements. We expect that there should be
singular enhancement in the Lennard-Jones potential energy
between particles near an entanglement point. To examine
this effect, we first define the potential energy of nonbonded
interaction on theith particle by

FIG. 3. N dependence ofN2/tr sPd, N/h sjd, and ND s+d.
These quantities are expected to tend to the Rouse limits for 1
!N!Ne. The solid lines represents3p2kBT/zb2d / s1+3N/Ned,
s36/nzb2d / s1+8N2/5Ne

2d, and skBT/zd / s1+3N/Ned with Ne=100.
These approximate expressions extrapolate the predicted formulaes
of the Rouse and reptation behaviors in the two limitsN!Ne and
N@Ne.

FIG. 4. Calculated viscosityhsġd=sxy/ ġ in (a), and normal stress differenceN1sġd=sxx−syy in (b) in steady states in shear for various
N. The vertical(solid) arrows indicate the points at whichġ=tr

−1, and the horizontal(dotted) arrows indicate the zero-shear viscosityh
=e0

`dt Gstd plotted in Fig. 3. As guides for the eyes, we draw straight lines of slope −0.7 and −0.8 in(a) and a line of slope 2 in(b). Note
that N1sġd~ġ2 for Newtonian shear.
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Wistd = o
jPnonbond

ULJsur istd − r jstdud. s18d

The particle pairsi and j mostly belong to different chains,
giving rise to the interchain contributions in Eq.(18). How-
ever, we also include the contributions from the pairs belong-
ing to the same chain but being not adjacent to each other
s j Þ i ±1d. We found that the thermal fluctuations ofWistd are
so large that their distributions are nearly Gaussian at each
time t without any noticeable correlations even between ad-
jacent beads(i and i +1 on the same chain). The nonbonded
interactionsWistd consist mostly of rapidly varying thermal
fluctuations uncorrelated to one another. With the end of re-
ducing such rapid components, we introduce the time aver-
age ofWistd,

Wist,td =
1

t
E

0

t

dt8 Wist + t8d, s19d

where the time intervalt is much longer than the micro-
scopic timet0 (=1 in our units). This time average is analo-
gous to that introduced by Thirumalai and Mountain in ana-
lyzing dynamics of supercooled liquids[36]. We introduce
the variancesstd [36],

sstd2 =
1

MNo
i

fWist0,td − kWlg2 =
2

t
E

0

t

dt8s1 − t8/tdFNBst8d,

s20d

where

FNBst8d = kWist0 + t8dWist0dl − kWl2. s21d

HerekWl is the thermal average ofWist0d over all the beads
nearly independent ofi and t0. In Eq. (20), the time-
correlation functionFNBst8d is assumed to be independent of
the initial timet0. We found thatsstd2 decays nearly asAt−1

for t@1. The coefficientA should then be given byA
=2e0

`dt8FNBst8d. This indicates that most of the contributions
in the time integral in Eq.(19) behave as thermal white noise
[36].

From the reptation theory[3,9] the distance of the thermal
bead motions during a time interval oft is estimated in the
short-time ranget!te as

,std = ÎkuDRstdu2l , ast/ted1/4 , t1/4, s22d

whereDRstd=Rst0+td−Rst0d is the displacement vector of
a bead during a time interval oft, a=bNe

1/2 is the tube diam-
eter, and[37]

te , t01Ne
2 , 3 3 104 s23d

is the onset time of the effect of tube constraints. The relation
in Eq. (22) is well satisfied in the range 10,t,104 for N
=250 in our simulation. This power law has been confirmed
in the previous simulations[11,12,14]. To achieve visualiza-
tion of entanglements in the following, we should require
,,a,Ne

1/2 and hencet,te,Ne
2 in Eq. (19).

With the above time-averaging procedure, the white noise
should be mostly eliminated with increasingt and, as a
result, long-lived correlations due to a small number of

entanglements should become detectable in the range 1
!t,te. In order to demonstrate this, in Fig. 5, we display
normalized instantaneous valuesfWistd−kWlg /ss0d in (a)
and normalized time-averaged valuesfWist ,td−kWlg /sstd
for t=53103=0.8310−2tr ,0.2te in (b) at an appropriate
time t after a long equilibration period. For thist, the dis-
tance,std in Eq. (22) is given by 4.5. Here the 10 chains in
our system at timet are straightened horizontally for the
visualization purpose. Similar pictures of a time-averaged
atomic mobility were given by Gao and Weiner[15], where
the presence of low mobility clusters was assumed to be due
to entanglements. In(a) almost no correlation can be seen

FIG. 5. (Color) Distributions of the nonbonded interaction en-
ergy on the chains forN=250 in a quiescent state. The 10 chains are
straightened on the plane. In(a) the normalized valuesfWistd
−kWlg /ss0d are shown, wheret=0 and no correlations along the
chains can be seen. In(b) the normalized, time-averaged values
fWist ,td−kWlg /sstd with t=53103 are shown, which are dis-
tinctly large in line segments consisting of several beads(in orange)
presumably due to entanglements. In(b) the active spots are num-
bered from 1 to 18 according to the criterion given around Eq.(24).
In (c) the data offWist ,td−kWlg /sstd for the three chains with the
spots 4–7 in(b) are shown. The horizontal axis denotes the bead
numbers 1ø i ø250 for the three chains. The beads above the bro-
ken line are defined as “active” beads.
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FIG. 6. The intrachain correlation functionEsn,td of the nonbonded interactions defined by Eq.(25) in (a), and its Fourier transformation
Psk,td defined by Eq.(26) in (b), for N=250. Heret=0 (thin-solid line), 5310 (dotted line), 53102 (dashed line), 53103 (bold line), and
53104 (dotted-dashed line). With increasingt we can see development of the minimum and the maxima presumably due to entanglements.
The inset in(a) showsEsn,td for small n for theset.

FIG. 7. (Color) Snapshots of
the deformed chains withN=250
on thexz plane atġt=5 in (a) and
at ġt=10 in (b), where a shear
flow with ġ=10−3 was applied at
t=0 with the same initial chain
configuration as in Fig. 5(b). The
nonbonded interactions witht
=500 are written on the chains.
The active spots satisfying the cri-
terion given around Eq.(24) are
detected, among which the num-
bered segments correspond to
those in Fig. 5(b). However, the
active spots which do not corre-
spond to those in Fig. 5(b) are
marked by +. The flow is in the
horizontal (x) direction, and the
shear gradient is in the out-of-
plane(y) direction. In(c) the data
of fWist ,td−kWlg /sstd for the
three chains with the spots 4–7 in
(b) are shown.
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along the chains. In(b), on the other hand, several consecu-
tive beads form “active spots” having relatively large values
of Wist ,td. Here a bead(being the ith one in a chain) is
defined to be active if the average

W̄ist,td =
1

7 o
j=i−3

i+3

Wjst,td s24d

over the seven adjacent valuess j = i −3,i −2,¯ , i +3d in the
same chain is larger than 1.1sstd. This averaging “in space”
furthermore eliminates random, small-scale fluctuations con-
sisting of a few beads and, as a result, the variance of the

averageW̄ist ,td becomes 0.65sstd for t=53103. Then we
select 4% of the total beads as active ones. In Fig. 5(b) they
form the active spots numbered from 1 to 18, consisting of
several consecutive active beads. In Fig. 5(c) we show

W̄ist ,td for the three chains with the active spots from 4 to 7.
Here we are expecting that these active spots should arise
from entanglements in most cases except for accidental en-
hancement of the nonbonded interactions. Figure 5(b) indi-
cates the existence of two or three entanglements on each
chain leading to the estimationNe>100.

To examine the correlations inWist ,td along the chain
contour quantitatively, we define the intrachain correlation
function of the nonbonded interaction

Esn,td =
1

Nstd o
j−i=n

fWist,td − kWlgfWjst,td − kWlg, s25d

where the two beadsi and j are separated byn on the same
chain and the average over all the chains is taken. The nor-
malization factorNstd is defined such thatEs0,td=1; then,
Nstd=MNsstd2~t. In Fig. 6, we showEsn,td in (a) and its
Fourier transformation,

Psk,td = o
n=0

N−1

Esn,tdcossknd, s26d

in (b) for t=0,50,500,53103, and 53104. The longestt is
of the same order aste in Eq. (23). The most conspicuous
feature is thatEsn,td takes a negative minimum aroundn
=45 and positive maxima aroundn=80 with increasingt.
The average displacement,std in Eq. (22) was calculated to
be 4.5 fort=53103 and 7.7 fort=53104. The contribu-
tions giving rise to these extrema grow in time in the nor-
malized correlationEsn,td or equivalently decay slower than
t−1 in the unnormalized correlationEsn,tdNstd. Correspond-
ingly, the Fourier transformationPsk,td has a peak atk
>2p /90 at larget. This suggestsNe>90. In addition, ift is
much larger thante, no periodic structure was observed in
Esn,td (not shown here). This should be because the en-
tanglements are delocalized along the chains in long time
intervals witht@te. Furthermore, as can be seen in the inset
of Fig. 6(a), the correlations between nearby beadsEsn,td

FIG. 8. (Color) Snapshots of
short chains withN=25 in thexz
plane at ġt=5 in (a) and at ġt
=10 in (b), where a shear flow
with ġ=10−2 was applied att=0.
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with 1øn&10 are nearly zero fort=0 but increases with
increasingt. We may determine the characteristic width
nwstd by Esn,td.10−2 for n,nwstd. If this definition is
used, the calculated values ofnwstd and ,std in Eq. (22)
nearly coincide(within a few 10%).

D. Entanglements under rapid shearing and stress overshoot

Next, we applied a shear flow with rateġ=10−3

,600/tr ,170/tR to the system ofN=250 andM =10. We
used the same initial values for the particle positions and
momenta as those which produced the data shown in Fig.
5(b). This is convenient to examine how entanglements be-
have in the quiescent and sheared conditions starting at ex-
actly the same conditions. Here the time scale of the flow-
induced chain deformationss,ġ−1d is much shorter thante

in Eq. (23). In Fig. 7 the chain conformations are projected
onto thexz plane(perpendicular to the velocity-gradient di-
rection) at ġt=5 in (a) and ġt=10 in (b). In (b) the shear
stress takes a maximum as will be shown in Fig. 9. Because
the chains are rapidly elongated, they eventually take zigzag
shapes bent presumably at entanglements. The nonbonded
interactions in these zig-zag points become increasingly am-
plified with increasing strain. This should be because a con-
siderable fraction of the stress is supported by entanglements
in strong deformations. As a result, active spots inWist ,td
can be detected even with much smallert than in the quies-

cent case, so we sett=500=0.5/ġ at this shear rate. In our
simulation the noise effect inWist ,td is much more reduced
for t, ġ−1 than in the quiescent case. Roughly speaking, a
2/3 fraction of the numbered active spots without shear in
Fig. 5(b) remain to be active spots under shear strain of 0.5,
and a 1/2 fraction of them become bent under shear in Fig.
7(a) and Fig. 7(b). As in the criterion in Fig. 5, the definition

of the active beads is given byW̄ist ,td.1.1sstd (but with
much smallert) and the number of the active beads is 4% of
the total bed number. We assign the same numbers to these
active spots if their contour distance between the locations
along the chain in the quiescent and sheared cases remains
shorter than 10. The bend regions marked by + in Fig. 7,
however, do not correspond to the numbered hot spots in
Fig. 5.

We can also see that the number of the bends has not
decreased from Fig. 7(a) to Fig. 7(b), but several of them are
approaching the chain ends and will disappear(not shown
here). Notice that the shear stress is maximum at the time of
Fig. 7(b). In the reptation theory it is assumed that entangle-
ments can be released only when they reach a chain end. If
our bends represent entanglements, the disentanglement pro-
cess induced by shear flow is going to start in Fig. 7(b), then
leading to a decrease of the shear stress.

For comparison, in Fig. 8 we show snapshots of the
chains for the shorter chain case ofN=25 in a quiescent state
in (a) and under shearġ=10−2 in (b), wheretr =1850s>tRd

FIG. 9. The stress growth
functions after application of
shear flow with ġ=10−3 for N
=250 in (a). The arrows(a) and
(b) indicate the points ofġt=5 in
Fig. 7(a) and ġt=10 in Fig. 7(b).
The maximum ofsxystd is at ġt
=10 and that ofN1std is at ġt=20.
The corresponding components of
the orientational tensorQabstd in
Eq. (27) are shown in(b). The ex-
tinction angle x in Eq. (30) is
shown in (c), which undershoots
before reaching a larger steady-
state value. These figures are the
results of the single run displayed
in Fig. 7.
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and there is no entanglement. The nonbonded interactions
are written with t=50, but we cannot see any particular
meaning in its heterogeneities on the chains with and without
shear. In strong shear flowġtR@1, the chains are at most
times elongated along the flow but undergo random tumbling
motions with period much longer thanġ−1. In (b) compactly
shaped chains are in the course of tumbling[24].

In the case of entangled melts, the shear stresssxystd and
the normal stressN1std=sxxstd−syystd are known to exhibit
overshoot behavior in rapid shearing[6,7,16,17,19,28]. In
Fig. 9(a) we show their time evolution after application of
shear att=0 with ġ=10−3 in the run of Fig. 7. On the one
hand,sxystd takes a maximum atġt=10, at which the disen-
tanglement starts. On the other hand,N1std takes a maximum
at ġt=20 afterwards. The same tendency of successive
maxima of sxystd and N1std was predicted theoretically[7]
and observed experimentally under rapid shearing[6,27,28].
In Fig. 9(b) we show the numerical result of the orientational
tensorQabstd defined by

Qabstd =
1

M o
chain

1

N − 1o
j=1

N−1

bmin
−2 bjastdbjbstd, s27d

where bmin
−1 b jstd are the normalized bond vectors and

oa Qaa>1 sinceub j u >bmin>0.96s as stated below Eq.(2).
For this shear ratesġ=10−3d, Qxxstd−Qyystd remains consid-
erably smaller than 1 and the chain bonds are still weakly
oriented along the flow direction. The overshoot ofQxxstd
−Qyystd indicates retraction of the chain contours(tubes) af-
ter onset of disentanglement. Comparing Fig. 9(a) and 9(b),
we notice the proportionality of the two deviatoric compo-
nents of the two tensors

sxystd = A0Qxystd, N1std = A0fQxxstd − Qyystdg, s28d

whereA0=2.2 (with the stress components being measured
in units of es−3) [38]. Note that the deviatoric part of the
stress of polymer melts is believed to be nearly equal to that
of the entropic stress contributions,kBTnQabd far above the
glass transition temperature[2,3]. Furthermore, the devia-

toric part of the dielectric tensoreab is proportional to that of
Qab provided that the microscopic polarization tensor is
uniaxial along the bond direction. Thus we obtain the well-
known stress-optical relations

exy = C0sxy, exx − eyy = C0ssxx − syyd, s29d

whereC0 is a polymer-dependent constant. In Fig. 9(c) we
also show the following angle:

x = 1
2tan−1s2sxy/N1d. s30d

On the basis of the stress-optical law, this angle is measured
as the extinction anglex=s1/2dtan−1f2exy/ sexx−eyydg in bi-
refringence experiments. In Fig. 8(c) we can see thatx ex-
hibits a small undershoot aroundġt=30 after the peaks of
sxystd andN1std. A similar retarded undershoot was observed
experimentally but has not been explained theoretically[7].

As the final example, we examine the case of much larger
shear rateġ=10−2,6000/tr ,1700/tR. Figure 10 displays
the snapshots of the chain conformations forġt=5 in (a) and
for ġt=12.5 in (b), where the chain stretching is stronger
than in Fig. 7 and the numbers of entanglements remain un-
changed. The time intervalt in Eq. (19) is set equal to 50. In
Fig. 11 we showsxystd and N1std in (a), both exhibiting a
peak aroundġt>12.5, andQxystd and Qxxstd−Qyystd in (b).
The stress overshoot is more enhanced than in the smaller
shear case in Fig. 9, and the stress components decrease
rather abruptly with onset of disentanglement. However,
Qxxstd−Qyystd saturates to a value about 0.7 without exhibit-
ing overshoot. Here even the bonds themselves align in the
flow direction and the chain stretching becomes nearly com-
plete. Interestingly, this bond alignment is still maintained
even after onset of disentanglement. As we remarked below
Eq. (2), bond elongation of order 3% is anharmonic for the
potentials in Eq.(1) and (2) and gives rise to a tensile force
of order e /s. In this simulation, such strong forces are ex-
erted on most of the bonds and the proportionality relation in
Eq. (28) does not hold.

FIG. 10. (Color) Snapshots of
the deformed chains withN=250
in the xz plane atġt=5 in (a) and
at ġt=12.5 in (b), where a shear
flow with ġ=10−2 was applied at
t=0. The nonbonded interactions
with t=50 are written on the
chains using the color map on the
left. In (b) the stretching is nearly
complete between the bends.
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III. SUMMARY AND CONCLUDING REMARKS

We have presented attempts to detect and visualize the
entanglements in a model polymer melt together with at-
tempts of indirectly derivingNe as in the previous simula-
tions. All the methods have yieldedNe,100. We admit that
the visualization in the quiescent case is not yet firmly estab-
lished by themselves in view of the fact that the thermal
noise still affects the data even after averaging in space and
time as in Fig. 5(c). However, under rapid shearing, a large
fraction of active spots with relatively large nonbonded in-
teractions become bent, evidently indicating the existence of
obstacles for the chain motion. Remarkably, the active spots
in the quiescent and sheared cases in Fig. 5 and 7 coincide
with a large probability(,2/3). We claim that a large frac-
tion of such obstacles arise from entanglements preexisting
even before application of shear. However, a few bends and
hot spots in Fig. 7 are not detected by the visualization
method in Fig. 5. This suggests that some hot spots from our
method may not represent entanglements.

We have detected discrete obstacles in the chains. In the
future we should examine how they are related to the con-
cepts of tubes in the reptation theory[2–5,11]. We mention
the work by Everaerset al., which numerically detected the
primitive paths[8].

As remarked already at the end of Sec. II A, the system
size in our simulations is still comparable to the end-to-end
distance for N=250 and our results need to be further
checked in future large-scale simulations with longer chains.
To eliminate the large thermal noise effect in the quiescent
case, we should take data in the well-defined reptation re-
gime underN@Ne.

Performing very long simulations, we have also calcu-
lated the stress relaxation functionGstd, which exhibits the
Rouse-to-reptation crossover with increasing the polymeriza-
tion indexN, and studied nonlinear rheology in transient and
steady sheared states. In transient states under shear, the
stress overshoot sets in as the bends approach the chain ends
and disappear, as can be seen from Fig. 7(b) and 9. This is
also one of our main results giving molecular information on
the stress overshoot under rapid shearing.

In real long chain systems, the ratiotd/tR,N/Ne can be
very large. Hence, in shear flow, there can be three charac-
teristic shear regions[7] given by (i) ġ,td

−1, (ii )
td

−1,ġ,tR
−1, and (iii ) ġ.tR

−1. Nonlinear shear effects
emerge in the regions(ii ) and(iii ), while the linear response
theory in terms ofGstd in Eq. (11) is valid only in the region
(i). In our study, the intermediate region(ii ) is not well-
defined, but the calculated overshoot and undershoot relax-
ations in Fig. 9[in the region(iii )] resemble those in the
experiments[6,27,28].
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FIG. 11. The stress growth functions after application of shear flow withġ=10−2 for N=250 in (a). The arrows(a) and(b) indicate the
points of ġt=5 in Fig. 10(a) and ġt=12.5 in Fig. 10(b). The corresponding components of the orientational tensorQabstd are shown in(b),
which demonstrate bond elongation along the flow and behave very differently from the stress components.
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