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Entanglements in quiescent and sheared polymer melts
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We visualize entanglements in polymer melts using molecular dynamics simulation. A bead at an entangle-
ment interacts persistently for long times with the nonbonded b@hdse excluding the adjacent ones in the
same chain The interaction energy of each bead with the nonbonded beads is averaged over a timesinterval
much longer than microscopic times but shorter than the onset time of tube constgatfi$anglements can
then be detected as hot spots consisting of several beads with relatively large values of the time-averaged
interaction energy. We next apply a shear flow with rate much faster than the disengagement motion of
entangled chains. With increasing strain the chains take zigzag shapes and one-half of the hot spots become
bent. The chains are first stretched as a network but, as the bends approach the chain ends, disentanglements
subsequently occur, leading to stress overshoot observed experimentally.
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[. INTRODUCTION Entanglements are discrete objects severely constraining
the chain motiongonly through “tubes” in the reptation
The dynamics of dense polymer melts has been a chatheory). However, the exact nature of entanglements is still
lenging subject in current polymer physigs-5]. While the  unclear and it is highly nontrivial how to detect them “di-
near-equilibrium dynamics of short chains with<N, can  rectly” in simulations. Therefore, it is at present impossible
be reasonably well described by the simple Rouse model, th® determineN, “precisely” from simulations. We also point
dynamics of very long chains witN> N, has not yet been out that the reptation theory does not provide the scaling
well understood on the microscopic level, since it is gov-functions of the physical quantities applicable even for not
erned by complicated entanglement effects. Herés the  large N/N.. The main aim of this paper is hence to give
polymerization index or the bead number of a chain, Blgd attempts to identify and visualize the entanglements on the
is the average bead number between consecutive entangi@icroscopic level. Here we mention related simulations.
ments. The reptation theof?—8| is the most successful ap- Ben-Naim et al. [26] could visualize individual entangle-
proach to date in describing the dynamics of entangled polyments using the fact that incidental contacts of the particles
mer chains in a surprisingly simple manner. It assumes thaind entanglement contacts behave differently because en-
entanglements form continuous “tubes” through which thetanglement constraints are long lived. Gao and Weiner intro-
chains reptate. Its predictions have been confirmed by duced a time-averaged atomic mobility and found that intra-
number of experimentdl9,10] and numerical[11-21 pa- chain atoms of relatively low mobility tend to cluster in
pers, where experimentally accessible quantities such as tlgoup along the chain fol=200, which suggests the exis-
stress relaxation functioB(t), the incoherent dynamic scat- tence of entanglemenf45]. In the recent Kroger and Hess
tering function, the mean square displacement, and the visimulation for 10 N<400 [18], the zero-shear viscosity
cosity have been compared with the theoretical predictiongobtained at extremely weak shgahanged over from the
[3]. However, N, estimated from the mean square displace-behaviorne«N to the behaviorp«N? with a in the range of
ment and that from the plateau modulus were around 30 an8 and 3.5 aroundN=N.~ 100. This crossover polymeriza-
70, respectively14], where the difference of these two esti- tion indexN, should be comparable t, but they did not set
mations indicates inaccuracy of the prefactors in the preN./N.=1, probably because of the lack of the theoretical
dicted formulas[3,22. These simulations were not direct scaling formula »=Nf,;s(N/Ng) describing the Rouse-to-
observations of entanglements, but rather confirmed the exeptation crossover as a function®fN,. In a similar simu-
istence of the entanglement effects indirectly using the for{ation, Aoyagi and Doi[19] calculated the steady state vis-
mulas of the reptation theory. Measurements of the dynamicosity and normal stress differences to examine nonlinear
structure factoriS(k,t) by the neutron spin-echo meth¢# rheology forN=100,200, and 400. In Table |, we summarize
gave information of the tube diamet@Né’2 in the reptation the simulations of freely jointed bead-sprifi§remer-Grest
theory and the resultaiN, was consistent with the estimated type) chains. The estimated valuesNf are only crude ones.
value from the plateau modulyboth being of order 100 Except for ours in this paper, they were obtained indirectly
Understanding macroscopic rheological properties oby fitting of numerical data to the predictiofia2]. At present
polymer melts in terms of microscopic molecular dynamicsit is still difficult to perform sufficiently large simulations
is also of great importance, where the mechanism of sheawith N> N..
thinning behavior is very different depending on whether The organization of this paper is as follows. In Sec. Il A
N<N. or N>N, and whether the glass transition is ap-our model system and our numerical method will be ex-
proached or not. Though still inadequate, extensive simulaplained. In Sec. 1l B, in the rangf=10-250, we will ex-
tions have been performed in this directigi6—19,23-2h amine the time-correlation function of the end-to-end vector
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TABLE |I. Summary of simulations of freely jointed chains. The second column shows the chain length in the simulations. The third and
fourth columns show the system siZ& and the simulation timé,,, in units of the chain dimensionN2 and the Rouse timeg,N2. In the
fifth to tenth columns the estimated valuesNyfare given(if estimated.

Refs. N V31 pNY2 tax! ToNZ N2 N> NS N NG Ng
KG1990[11] 200 0.9 1.5 120 35 34-50 60
KLH1993 [16] 300 1.5 (~11)8 100
GW1995[15] 200 0.9 0.3
BGWB1996[26] 350 1.9 1.8
AD2000[19] 400 0.6 0.4
PKG2000[14] 350 1.5 8.2
700 1.9 0.2 32-35
10000 0.7 0.0002 28-32 65-83
KH2000([18] 400 2.7 (~18)9 100
Present study 250 0.7 80 100 100 100 90

%From center-of-mass diffusion.

PFrom monomer diffusion.

“From scattering function.

YFrom stress relaxation function.

°From zero-shear viscosity.

From direct visualizations.

9Estimated from the data given in Refd6] and[18].

C(t), the stress relaxation functidB(t), the zero-shear vis- kept atT=e/kg. At this temperature there was no glasslike
cosity obtained fromzn=[gdt G(t), and the diffusion con- enhancement of the structural relaxation time, butTat
stantD. These data will indicatdl,~ 100 with the aid of the ~=0.2¢/kg the present model withi=10 became glassy in our
reptation theory in agreement with the previous simulationsprevious simulation[24]. Note that our density value is
The rheological crossover from the Newtonian to shearhigher than the widely used value=0.85/0° in the previous
thinning behavior will also be examined for variodsas in ~ Simulations[11,14,16-19,26 (With increasingn the free

the work by Aoyagi and Do[19]. We here stress tha&(t) volume for particles decreases and hem¢ein our case
exhibits multiscale relaxations over many decades in chaighould be somewhat shorter than in the previous simula-
systems and its numerical calculation has been rare becautiens) The consecutive beads on each chain are connected by
it requires very long simulation®0,21,24,2% We will then ~ an anharmonic spring potential of the form

present time-averaging methods of detecting entanglements 1, )

in quiescent states in Sec. Il C and in rapidly sheared states Urene(r) = = 2keRg In[1 = (r/Ro)“], 2

in Sec. Il D. Our “direct” observations of entanglements will _ _ o
again giveN.~ 100 and enable us to examine how the stresg"here ke=30e/ 0 and Ry=150. The bonded pairs in the

overshoot and chain stretching occur in transient state ame chain thus interact via the sum of the two potentials,
[6,27,28. T(r):ULJ(r)+UFENE(r-), Wh[ch has a deep minimum at
=bmin=0.960. In our simulations the actual bond lengths be-
tween two consecutive beads remained very closé,tp
Il. NUMERICAL SECTION with deviations being at most a few % bf,, even under
rapid shearing. In fact, the expansiod+(r)—U(byin)
=478¢(r /byi,—1)? follows around the minimum, so the
We used the bead-spring modgll] for our polymer deviation of this potential from the minimum value becomes
melts composed oM chains withN particles or beads in a of order e even forr-b,,;,~0.04o. [This means that the
cubic box with volumeV. The total particle numbedM was  thermal fluctuation of the bond lengths is of order
1000 forN=10,25, and 100, and was increased to 2500 foi0.040(kgT/ €)*/2.] Hereafter we will measure space and time
N=250. All the particle pairs interact via a truncated in units of o and ry=(mo?/ €)%, respectively, withm being
Lennard-Jones potential defined [il] the particle mass, unless confusion may occur. We numeri-
_ 12 6 cally solved Newton’s equations of motion and took data
Uo(r) = 4el(ofr) == (a/r)"] + €. @ after long equilibration periods of order 485X 10PAt).
The right-hand side is minimum at2Y6¢ and the potential In quiescent cases, we imposed the microcanonical con-
is truncatedor zerg for largerr. Using the repulsive part of dition with time stepAt=0.005 under the periodic boundary
the Lennard-Jones potential only in this manner, we mayondition. In the presence of shear flow, we 4é£0.0025
prevent spatial overlap of the particlgsl]. The number den- and kept the temperature atkg using the Gaussian con-
sity was fixed an=NM/V=1/¢3, and the temperature was straint thermostat to eliminate viscous heatjag,3(. After

A. Model
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R (Pto)[? = (N - 1)b2. (4)

In the present cadeis equal to 1.26. This value is slightly
shorter tharb=1.30 obtained by Kremer and Grefl1] for
n=0.85/c" but of course longer than the actual bond lengths
Ibj|=|Rj.+1(t) —R;(t)] = bpyn(=0.96s), where by, was intro-
duced below Eq(2) [32]. For this time-correlation function
both the Rouse dynamics and the reptation dynamics predict
the same simple functional forf3]. ForN>1 it is a scaling
function oft/ 7, in terms of a relaxation time, as

80

8
C(t)= >, ——exp-p2t/r), 5
t O%pwzpz A= pt/n) (5)
where the summation is over ogidand 1=p=<N-1. Since
the first term(p=1) in the summation is dominant for any
this function decays nearly exponentially andmay be de-
termined from C(r,)=e™*. As shown in Fig. 1, forN

=10,25,100 and 250, we obtained

7, =270,1850,4.6¢ 10,6 X 10° (6)

) ) . . or 7,/N?=2.7,3.0,4.6, and 9.6, respectively. The calculated

FIG. 1. The normalized time-correlation functi@(t) for the  cyrye for N=100 can be excellently fitted to the theoretical
end-to-end vectors in E¢3) for variousN (solid lineg on a semi-  f,nction C(t) in Eq. (5). For the other values dfl the devia-
logarithmic scale. They can be fitted to the theoretical expression ili]ion is at most of order 4% arounid~0.1r. However. at
Eqg. (5) (dashed lines The arrows indicate the terminal relaxation long timest= 7., good agreement betweén I:[.he calculat’ed and
time 7, defined byC(7,)=€"1, which is the Rouse relaxation timg theoretical curr\}es was obtained for aNy

th tation fi d di hethéd <N N> Ne. . . .
or fne repiation timéy cepending on whe 0 Of © Theoretically[3], the relaxation time; should be equal to

. . . ) ) . the Rouse relaxation time
a long equilibration period in a quiescent state in the time

regiont<0, all the particles acquired a velocity in the x TR = To1N? (7)
direction att=0, and then the Lee-Edwards boundary condi—f N<N. and to th tati disentanal i

tion [29,30 maintained the simple shear flow. The periodic or e and to the reptation or disentanglement tifg
boundary condition was imposed in thedirection. Steady 79 = ThN3INg (8)

sheared states were realized after transient behavior. 2o D R .
For the caseN=250 the system lengthv'? is 25003 for N>’f\let‘h Here 7o,=(b /?.T thT and IOl_tgbd/ﬂtf]kB-[) md

=14, which is of the same order as the end-to-end distanc?rmtsht?. Ee nlonl?men((:jbnc lon cons th atr: . de or:j N

of the chaing(=bN"?). For such a small system size under eng in Eq.(4). It £ andb are assumed to be independen

the periodic boundary condition, however, it is not clear howOf N, the theory predicts

accurately we can simulate the dynamics of real entangled 70,= 3701, 7l o= 3N/N,. 9)
polymers. In future work, simulations are desirable in larger . ,
systems where bottN>N, and V23s>oNY2 are well It has been argued that the Rouse timénas a well-defined
satisfied. ¢ physical meaning even in the reptation regime as the relax-

ation time of the chain contour in a tul),6,7].
For N=10, the Rouse dynamics should be valid and

=175 should hold, so our data d&f and 7, yield
First we show that our numerical results near equilibrium _ ) _
are consistent with the Rouse or reptation thg@iy In Fig. T01=2.7, {blkgT = 80. (10)
1, for variousN on a semilogarithmic scale, we show the |f the Rouse dynamics was assumed also fbr25, ¢
normalized time-correlation function of the end-to-end vec-yas increased by 10%, while a larger increase of 20% was
tor P=Ry—Ro, reported forN=10 andN=20 in Ref.[11]. In this paper
- . 2 we used the value of determined folN=10. Our value of

CO =(P(t+10) - Pt |P(to)[%) ) ¢ is about twice larger than in the previous simulations with
which is normalized such th&(0)=1. Here, because of the no®=0.85 (see Ref.[14]). We then discuss the case Nf
finite size of our system, the denominator and numerator o250, for which our data giver,/ 7R~ 4.6Xx 10%/(0.027
the right-hand side remain to be considerably dependent or 25(0?)=3.6 and the theoretical results in E() give
tp even after taking the averages over all the chdBH. 74/ 'R=750/N,. In this paperfrom Figs. 2, 5-7, and 10 be-
Thus they were also averaged over the initial titpeThe  low), we will obtain No~ 100, which then yieldsry/ 7
statistical(temperature-dependgritond lengthb is defined ~7.5 andry/ 7, ~7.5/3.6~2. Thus there arises a difference
by of a factor 2 between the theoretical and the numerically

B. Crossover from Rouse to reptation dynamics
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N-1
G =" expi= pU ), (13
p=1

where 75;=2.7 as determined in E¢10). However, for the
longest chain casbl=250 andM =10, G(t) was calculated
from a single very long run performed up te=5x 1P
=10°At with the average ovet, being taken. For 18t
=10° it agrees withGg(t) (right dotted ling, but in the

. terminal time range=7,=6Xx10° the calculatedG(t) re-
laxes much slower than predicted by the Rouse dynamics. In
Fig. 2, although the characteristic plateau behavior Nor

- >N, is not clearly seen, we draw the theoretical stress relax-
ation functionG(t) given by[3]

i 3nksT
‘ Gregt) = 5—Nec(t) (14
SR WP with N,=100(dashed ling whereC(t) is defined in Eq(5).
10° 10* 10° 10° 10’  The agreement appears to be fair fer 10°, but due to the
P noisy behavior and the absence of well-defined plateau in
G(t), we may claim only that\, is in the range 7& N,
FIG. 2. The stress relaxation functigg(t) for N=25 and 250 <150 from the fitting. Note that the value of at N=250
(solid lines in units of ea”2. Its N dependence is weak for 107 used forC(t) in Eq. (14) is obtained from Fig. 1 or Eq6).
but becomes increasingly stronger at later times. Rer25 the Further remarks regarding Fig. 2 are as followis First,
curve of G(t) can well be fitted to the Rouse relaxation function the initial vaIueG(0)=V<o-f )/ ksT takes a very large value
Gr(h) with 7,=2.7 andN=25 in Eq.(10) (left dotted ling. FOrN 5, \+ 9onot seen in Fig. )gand is nearly independent bF
=250, it can be fitted to the reptation relaxation funct®g(t) in Because the initial values dBg(t) and G.{t) are much
Eq. (14) for t= 7, (dashed ling where7,=6x 10° in C(t) and N, . R rep(~
=100 in the prefactor. For comparison we also sh@u(t) with smaller - as GR(O):nkBTw_l and Grep(0)=3nkBT/5Ne
701=2.7 andN=250 (right dotted ling. It much deviates from the 025, agreement dB(t) with these model relaxation func-
calculated curve of3(t) of N=250 for t=10% while they agree tiONns is attained only after transient relaxatidBs]. As re-
fairly well for 10<t=<10°. ported previously[20,24, the high-frequency vibration of
the bond lengthgwith period 0.14 heregives rise to initial

obtainedr,. It could stem from two possible origins. One is oscillatory behavior inG(t) at short times(t=1) [34]. (ii)

that the Rouse-to-reptation crossover has not yet been weR€c0nd, e notice marked noisy behavior of the curves in
realized forN=250~ 2.5N,. The other is that the prefactors '19- 2 fort=t, as already reported in Ref20,24. For such

in the reptation theory are inaccurate as suggested byeRiitz !a,fge time separation, the_ correlation Qf order“‘lOf.the
al. for large N [14]. These seem to be both relevant in theinitial value needs to be picked up, while the amplitude of
present work. the thermal fluctuations af,(t) at each time is given by

'In Fig. 2 we sho_w our numerical data of the stress relax- oy = [<ny(t)2>]1/2~ [G(O)kgT/V]H2. (15)
ation function forN=25 and 250 expressed by

G
o

107

1 0—4 |

107" 10° 10" 107

This quantity is of ordef92/2500%2~ 0.2 for the case of

N=250 in the dimensionless unif24]. The noisy behavior

in G(t) in the terminal time range can in principle be elimi-

nated only if the system size is very large and/or many runs

whereV is the system volume and the tensey,(t) is de-  are performed.

fined by[16,17,24 In Fig. 3, we summarize our results of the relaxation time
7, the zero-frequency shear viscosiiy=[dt G(t) in the
linear regime, and the diffusion constedt as functions of

\rlf dr TL4(r 1) = p(t) Spp = Tap(t) (12)  N. Here p=N in the Rouse dynamics angl<N3/NZ in the

reptation dynamics. The diffusion constant was obtained
from the relation

in terms of the microscopic stress ten$by,(r ,t). The pres- 2\ —

sure p(t) may be defined such thata,;(t)ﬁ is traceless or (1ARs(1)) =6Dt, (16)

deviatoric. See Refg16,17,24 for the microscopic expres- Wheret> 7, and ARg(t)=Rg(to+t) ~Rg(to) is the displace-

sion of a,4(t). The curve for the short chain calk=25 and  ment vector of the center of mass of the chains in a

M=40 is a result of the averages over 10 independent runigme interval [to,t+to] with width t. At the end of the

and over the initial time,. Fort=10 it can be excellently runs, the mean square displacement much excéBds)|?)

fitted to the Rouse relaxation functigteft dotted ling [3], in Eq. (4) for N<100, but is only 1.5 times larger for

G(t) = (kBT)_l\/(ny(t + tO)ny(to»v (11
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10% r r We also show that our model polymer melts exhibit

3 strongly nonlinear behavior foy> 7. . Figure 4 displays the
steady-state shear viscosity in (a) and the steady-state
normal-stress differencd, in (b), where

() =oxly,  Na(y) = (o0 = (oyy). 17

Here the stress components consist of the contributions from
all the particles as defined by E@{.2) and we took the time
average(oj;(ty)) over ty within an interval with width 200.
The vertical (solid) arrows indicate the points at which
=71 For y<r.', the system shows Newtonian behavior,
and 7 converges to the zero shear viscosiiy [;dt G(t),
indicated with the horizontadotted arrows in Fig. 4a). On

the other handy(y) at high shear is nearly independent\of

in agreement with rheology experimen$,7,39 and the
previous simulationg16—19, while N4(y) is an increasing
function of N at any shear rate. If the dataNf100 and 250

at high shear are fitted to power laws, we roughly obtain
1073 Y T S 7(y)~ vy and Ny(y) ~ y*IN®t with a~0.7, a;~0.5, and
10 10 10 10 ¢1~1.0. The second normal stress differendgy)=(a,)

N —(0,, (not shown hergwas smaller tharN;(vy) by about
two orders of magnitude at any shear rates. In the literature
These quantities are expected to tend to the Rouse limits for {3’6’1 it has been argue.d that the relaxatlpn of the .Cham
<N<N,. The solid lines represent3m?kgT/{b?)/(1+3N/Ny), .Contours oceurs on the time scale gf and S of CfUCI&}I
(36/nb)/ (1+8N2/5N2), and (kgT/{)/(1+3N/Ng) with Ny=100. importance in nonlinear rheology under rapid deformations.

These approximate expressions extrapolate the predicted formula!a@our case, howeve_r, Fig. 1 shows that the rafiay _|s_only
of the Rouse and reptation behaviors in the two linNtgN, and ~ @oout 3.6 even foN=250, so we cannot draw definite con-

N> N,. clusions on the overall nonlinear rheology.

FIG. 3. N dependence oN?/7, (@), N/» (M), and ND (o).

N=250. It is known thaD «N* in the Rouse dynamics and
D= Ng/N? in the reptation dynamicg3]. In Fig. 3 we can
see that the dynamics of our system cannot be described by For the longest chain cadé=250, we attempt to identify

the Rouse dynamics with increasifdd{=100). Though the and visualize entanglements. We expect that there should be
largestN(=250) is only 2.5 times larger than our estimated singular enhancement in the Lennard-Jones potential energy
Ne, the N dependencies in Fig. 3 are consistent with thebetween particles near an entanglement point. To examine
crossover from the Rouse to reptation dynamics reported ithis effect, we first define the potential energy of nonbonded

C. Entanglements in quiescent states

the previous simulationgl1-14,16-18 interaction on theth particle by
4
10 r T T r v r 102 . -
) )
10'{ 1
10% .
N <
= 107}
1073
10N =250 15,
25 10
1%‘7 10 107 107 100 107 107 100 10) Gttt )
10 10 107" 10™ 10™° 10™ 10~ 10™ 107 10

¥ y
FIG. 4. Calculated viscosity/(y)=oyy/ v in (a), and normal stress differen® () = oy~ oy, in (b) in steady states in shear for various
N. The vertical(solid) arrows indicate the points at whic'h:rr_l, and the horizonta{dotted arrows indicate the zero-shear viscosigy

=[¢dt G(t) plotted in Fig. 3. As guides for the eyes, we draw straight lines of slope -0.7 and —-@Band a line of slope 2 iiib). Note
that N;(y) = 42 for Newtonian shear.
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W= X Uy(r®-ro). (18) W28t =0

jenonbond

The particle pairs andj mostly belong to different chains,
giving rise to the interchain contributions in Ed.8). How-
ever, we also include the contributions from the pairs belong-
ing to the same chain but being not adjacent to each othe
(j #ix1). We found that the thermal fluctuations\6f(t) are

so large that their distributions are nearly Gaussian at eacl
time t without any noticeable correlations even between ad-
jacent beadsi andi+1 on the same chainThe nonbonded
interactionsW(t) consist mostly of rapidly varying thermal
fluctuations uncorrelated to one another. With the end of re-
ducing such rapid components, we introduce the time aver-
age of Wi(t),

Wi(t,7) = lfr dt’ Wi(t+1t'), (19
TJo

where the time intervalr is much longer than the micro-
scopic timery (=1 in our unitg. This time average is analo-
gous to that introduced by Thirumalai and Mountain in ana-
lyzing dynamics of supercooled liquid86]. We introduce
the variances(7) [36],

1

2 T
o(1)?= WE [Wi(to,7) = (W)]J? = -f dt' (1 -t'/nFNE(t"),
i TJo

(20)
where
FNB(E) = (Wi(to + t)Wi(to)) — (W)2. (21)

Here(W) is the thermal average & (ty) over all the beads ]
nearly independent of and t,. In Eg. (20), the time- !

.  NB e ‘
correlation functiorF™™(t’) is assumed to be independent of FIG. 5. (Color) Distributions of the nonbonded interaction en-

the initial timet,. We found thais()* decays nearly ads™* ergy on the chains fd{=250 in a quiescent state. The 10 chains are
for 7>1. The coefficientA should then be given bA  straightened on the plane. i@ the normalized value$Wi(t)
=2fgdt'FNB(t/). This indicates that most of the contributions —(W)]/o(0) are shown, where=0 and no correlations along the
in the time integral in Eq(19) behave as thermal white noise chains can be seen. Ib) the normalized, time-averaged values
[36]. [Wi(t, )= (W)]/a(r) with 7=5X10° are shown, which are dis-
From the reptation theors,9] the distance of the thermal tinctly large in line segments consisting of several beadsrange
bead motions during a time interval efis estimated in the presumably due to entanglements.(n the active spots are num-

short-time ranger< 7, as bered from 1 to 18 according to the criterion given around(E4).
e va M In (c) the data of Wi(t, 7) —(W)]/ o(7) for the three chains with the
O(r) = \“"<|AR(T)| ) ~a(rl )™ ~ 4, (22) spots 4-7 in(b) are shown. The horizontal axis denotes the bead

numbers ki=<250 for the three chains. The beads above the bro-

where AR(7)=R(ty+ 7) —R(tp) is the displacement vector of ken line are defined as “active” beads.

a bead during a time interval of a=bN}? is the tube diam-
eter, and37] entanglements should become detectable in the range 1
< 7<7. In order to demonstrate this, in Fig. 5, we displa
7~ 70N ~ 3% 10° (23 ormalized instantaneous vaIuéN(t)—(V\/)]%a(O) in (a)p y
is the onset time of the effect of tube constraints. The relatio®nd normalized time-averaged valugsi(t, 7)—(W)]/o(7)
in Eq. (22) is well satisfied in the range ¥07<10* for N for 7=5X10°=0.8X 10727, ~0.27, in (b) at an appropriate
=250 in our simulation. This power law has been confirmedime t after a long equilibration period. For this the dis-
in the previous simulationgl1,12,14. To achieve visualiza- tance€(7) in Eq. (22) is given by 4.5. Here the 10 chains in
tion of entanglements in the following, we should requireour system at time are straightened horizontally for the
¢<a~NZl?and hencer< 7,~N2 in Eq. (19). visualization purpose. Similar pictures of a time-averaged
With the above time-averaging procedure, the white noisatomic mobility were given by Gao and Weings5], where
should be mostly eliminated with increasingand, as a the presence of low mobility clusters was assumed to be due
result, long-lived correlations due to a small number ofto entanglements. Iga) almost no correlation can be seen
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FIG. 6. The intrachain correlation functi@i{n, 7) of the nonbonded interactions defined by E2f) in (a), and its Fourier transformation
P(k,7) defined by Eq(26) in (b), for N=250. Herer=0 (thin-solid ling), 5% 10 (dotted ling, 5x 10? (dashed ling 5x 10° (bold line), and
5% 10* (dotted-dashed lineWith increasingr we can see development of the minimum and the maxima presumably due to entanglements.
The inset in(a) showsE(n, 7) for smalln for theser.

N=250, y=0.001

FIG. 7. (Color) Snapshots of
the deformed chains withN=250
on thexz plane atyt=5 in (a) and
at yt=10 in (b), where a shear
flow with y=10" was applied at
t=0 with the same initial chain
configuration as in Fig. Bb). The
nonbonded interactions withr
=500 are written on the chains.
The active spots satisfying the cri-
terion given around Eq(24) are
detected, among which the num-
bered segments correspond to
those in Fig. B). However, the
active spots which do not corre-
7 spond to those in Fig. (6) are

1 marked by +. The flow is in the
—————— _ horizontal (x) direction, and the
shear gradient is in the out-of-
plane(y) direction. In(c) the data
of [Wi(t,7)—=(W)]/o(7) for the
three chains with the spots 4-7 in
(b) are shown.

w{t7)
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FIG. 8. (Color) Snapshots of
short chains witiN=25 in thexz
plane atyt=5 in (a) and at yt
=10 in (b), where a shear flow
with =102 was applied at=0.

(@) yt=0 (b) yt=10
along the chains. Ib), on the other hand, several consecu- 1
tive beads form “active spots” having relatively large values E(n,7) = WE [Wict, 7) = (W) ITW;(t, 1) = (W)], (25)
of Wi(t,7). Here a beadbeing theith one in a chaipis J=1=n
defined to be active if the average where the two beadsandj are separated by on the same

chain and the average over all the chains is taken. The nor-
malization factor\(7) is defined such thaE(0,7)=1; then,

_ +3 N(7)=MNo(7?= 7. In Fig. 6, we showE(n, 7) in (a) and its
Wi(t,7) = ?.sti(t’ﬁ (24 Fourier transformation,
j=i-
N-1
P(k,7) = >, E(n,7)cogkn), (26)
over the seven adjacent valugsi—3,i-2,---,i+3) in the n=0

same chain is_la_rger than ). This averaging “in s_pace" in (b) for 7=0,50,500,5< 1%, and 5x 10%. The longest is
fL_thhermore eliminates random, small-scale fluctL_Jatlons COMgt the same order as, in Eq. (23). The most conspicuous
sisting of a few beads and, as a result, the variance of thg 5t re is thatE(n, 7) takes a negative minimum aroumd
averageW(t, ) becomes 0.65(7) for 7=5X 10°. Then we =45 and positive maxima arount=80 with increasingr.
select 4% of the total beads as active ones. In Hig) iey  The average displacemeéitr) in Eq. (22) was calculated to
form the active spots numbered from 1 to 18, consisting ohe 4.5 forr=5x 10% and 7.7 forr=5X% 10*. The contribu-
several consecutive active beads. In Figc)5we show  tions giving rise to these extrema grow in time in the nor-
W(t, 7) for the three chains with the active spots from 4 to 7.malized correlatioriE(n, 7) or equivalently decay slower than
Here we are expecting that these active spots should arise* in the unnormalized correlatidg(n, 7)NV(7). Correspond-
from entanglements in most cases except for accidental erngly, the Fourier transformatioP(k,7) has a peak ak

hancement of the nonbonded interactions. Figut® bdi-  =27/90 at larger. This suggestdl,=90. In addition, ifr is
cates the existence of two or three entanglements on eachuch larger thanr, no periodic structure was observed in
chain leading to the estimatidd,= 100. E(n,7) (not shown herg This should be because the en-

To examine the correlations iW(t,7) along the chain tanglements are delocalized along the chains in long time
contour quantitatively, we define the intrachain correlationintervals with7> 7. Furthermore, as can be seen in the inset
function of the nonbonded interaction of Fig. 6@a), the correlations between nearby beé&ds, 7)
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10° T

b RS

FIG. 9. The stress growth
functions after application of
shear flow with =102 for N
=250 in (a). The arrows(a) and
(b) indicate the points ofyt=5 in
Fig. 7(@ and %t=10 in Fig. 1b).
10° The maximum ofoy(t) is at

=10 and that ofN4(t) is at yt=20.
. . The corresponding components of
y=10" (© the orientational tenso®,4(t) in
Eq. (27) are shown inb). The ex-
tinction angle y in Eq. (30) is
shown in(c), which undershoots
before reaching a larger steady-
state value. These figures are the
results of the single run displayed
in Fig. 7.

er' Qu Q)[V

20

Extinction Angle y (in degrees)

10
undershoot

10°
yt

with 1<n=<10 are nearly zero for=0 but increases with cent case, so we set500=0.5/ at this shear rate. In our
increasingz. We may determine the characteristic width simulation the noise effect i#(t, 7) is much more reduced
ny(7) by E(n,7)>102 for n<n,(7). If this definition is  for 7~y than in the quiescent case. Roughly speaking, a
used, the calculated values of(7) and €(7) in Eq. (22 2/3 fraction of the numbered active spots without shear in
nearly coincidgwithin a few 10%. Fig. 5b) remain to be active spots under shear strain of 0.5,
and a 1/2 fraction of them become bent under shear in Fig.
7(a) and Fig. b). As in the criterion in Fig. 5, the definition
of the active beads is given By (t, 7) > 1.10(7) (but with

Next, we applied a shear flow with rat¢=10°  much smallerr) and the number of the active beads is 4% of
~600/7,~170/7 to the system oN=250 andM=10. We  the total bed number. We assign the same numbers to these
used the same initial values for the particle positions andctive spots if their contour distance between the locations
momenta as those which produced the data shown in Figlong the chain in the quiescent and sheared cases remains
S(b). This is convenient to examine how entanglements beshorter than 10. The bend regions marked by + in Fig. 7,
have in the quiescent and sheared conditions starting at ekowever, do not correspond to the numbered hot spots in
actly the same conditions. Here the time scale of the flowFig. 5.
induced chain deformations-y™*) is much shorter tham, We can also see that the number of the bends has not
in Eq. (23). In Fig. 7 the chain conformations are projected decreased from Fig.(&) to Fig. Ab), but several of them are
onto thexz plane(perpendicular to the velocity-gradient di- approaching the chain ends and will disapp@@t shown
rection at yt=5 in (a) and =10 in (b). In (b) the shear herg. Notice that the shear stress is maximum at the time of
stress takes a maximum as will be shown in Fig. 9. BecausFig. 7(b). In the reptation theory it is assumed that entangle-
the chains are rapidly elongated, they eventually take zigzagents can be released only when they reach a chain end. If
shapes bent presumably at entanglements. The nonbondedr bends represent entanglements, the disentanglement pro-
interactions in these zig-zag points become increasingly ameess induced by shear flow is going to start in Figp),7then
plified with increasing strain. This should be because a conteading to a decrease of the shear stress.
siderable fraction of the stress is supported by entanglements For comparison, in Fig. 8 we show snapshots of the
in strong deformations. As a result, active spotsAfit,7)  chains for the shorter chain caseMf 25 in a quiescent state
can be detected even with much smaltghan in the quies- in (a) and under sheay=1072 in (b), where 7,=1850=1g)

D. Entanglements under rapid shearing and stress overshoot
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N=250, 7 =0.01

FIG. 10. (Color) Snapshots of
the deformed chains withN=250
in the xz plane atyt=5 in (a) and
at yt=12.5 in(b), where a shear
flow with =102 was applied at
t=0. The nonbonded interactions
with 7=50 are written on the
chains using the color map on the
left. In (b) the stretching is nearly
complete between the bends.

(b) jt=12.5

and there is no entanglement. The nonbonded interactiortsric part of the dielectric tensa, is proportional to that of
are written with 7=50, but we cannot see any particular Q,z provided that the microscopic polarization tensor is
meaning in its heterogeneities on the chains with and withoutiniaxial along the bond direction. Thus we obtain the well-
shear. In strong shear flogrrg>1, the chains are at most known stress-optical relations
times elongated along the flow but undergo random tumbling
motions With period_ much longer thay™. In (b) compactly €y=CoOyy,  Ex— €y = ColTyx— Tyy), (29
shaped chains are in the course of tumbligg].

In the case of entangled melts, the shear stgg$) and  whereC, is a polymer-dependent constant. In Figc)9we
the normal stresdl;(t) =oy(t) —oy,(t) are known to exhibit  a|so show the following angle:
overshoot behavior in rapid shearif§,7,16,17,19,2B In
Fig. Q@) \ive show_ t_helrstl_me evolution gfter application of x= %tan‘l(Zoxy/Nl). (30)
shear at=0 with y=10" in the run of Fig. 7. On the one

hand, o,,(t) takes a maximum ajt=10, at which the disen- 0 pais of the stress-optical law, this angle is measured

as the extinction angIQ:(1/2)tan‘1[26Xy/(exx— €y, ] in bi-
?efringence experiments. In Fig(® we can see thay ex-
hibits a small undershoot around=30 after the peaks of
ayy(1) andNy(t). A similar retarded undershoot was observed
experimentally but has not been explained theoretidally

As the final example, we examine the case of much larger

maxima of o,(t) and N,(t) was predicted theoreticalll7]
and observed experimentally under rapid sheaftg7,2g.

In Fig. Ab) we show the numerical result of the orientational
tensorQ,4(t) defined by

1 g M2 shear ratey=102~6000/r, ~ 1700/7;. Figure 10 displays
Qup(t) = => > b;12inbja(t)bj A0, (27)  the snapshots of the chain conformations#o+5 in (a) and
M chainlN = 1721 for t=12.5 in (b), where the chain stretching is stronger
where b;linbj(t) are the normalized bond vectors and than in Fig. 7 and the numbers of entanglements remain un-

changed. The time intervalin Eq.(19) is set equal to 50. In
Fig. 11 we showo,(t) and Ny(t) in (a), both exhibiting a
eak aroundyt=12.5, andQ,(t) and Q,,(t)—Q,,(t) in (b).
oriented_ aI.ong the flow_ direction. Th_e overshoot @f(t) Sﬁeeaft::eassseoi\r/]e;:sigt.)og,lzr:go;ﬁeegggggegongrignir;edségael;esre
~Qy(t) indicates retraction of the chain contoutsbeg af-  oier abruptly with onset of disentanglement. However,
ter onset of disentanglement. Comparing Fi@) @nd 9b),  q (t)-Q,(t) saturates to a value about 0.7 without exhibit-
we notice the proportionality of the two deviatoric COmpO-jn4 overshoot. Here even the bonds themselves align in the
nents of the two tensors flow direction and the chain stretching becomes nearly com-
- - _ plete. Interestingly, this bond alignment is still maintained

V)= AQf): - Na() = A Q) = Q)] (28) even after onset of disentanglement. As we remarked below
where Ay=2.2 (with the stress components being measuredeq. (2), bond elongation of order 3% is anharmonic for the
in units of eo3) [38]. Note that the deviatoric part of the potentials in Eq(1) and(2) and gives rise to a tensile force
stress of polymer melts is believed to be nearly equal to thadf order e/ . In this simulation, such strong forces are ex-
of the entropic stress contributidn-ksTnQ, ) far above the  erted on most of the bonds and the proportionality relation in
glass transition temperatui@,3]. Furthermore, the devia- Eq.(28) does not hold.

3, Que=1 since|b;| =by,,=0.96s as stated below Eq¢2).
For this shear ratéy=10"3), Q(t)~Q,,(t) remains consid-
erably smaller than 1 and the chain bonds are still weakl
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2

10 (b)

107 10° 10" 10° 10° 107! 10° 10’ 10° 10®

yt yi
FIG. 11. The stress growth functions after application of shear flow w02 for N=250 in(a). The arrowsa) and(b) indicate the

points of yt=5 in Fig. 1Qa) and t=12.5 in Fig. 1Qb). The corresponding components of the orientational te@gsgft) are shown in(b),
which demonstrate bond elongation along the flow and behave very differently from the stress components.

ll. SUMMARY AND CONCLUDING REMARKS Performing very long simulations, we have also calcu-

We have presented attempts to detect and visualize tHated the stress relaxation func.ti@(t), whi.ch exhibits the-
entanglements in a model polymer melt together with atfRouse-to-reptation crossover with increasing the polymeriza-
tempts of indirectly deriving\, as in the previous simula- tion indexN, and studied nonlmeay rheology in transient and
tions. All the methods have yielded,~ 100. We admit that steady sheared states. In transient states under she_ar, the
the visualization in the quiescent case is not yet firmly estabStress overshoot sets in as the bends approach the chain ends
lished by themselves in view of the fact that the thermal@nd disappear, as can be seen from F{g) and 9. This is
noise still affects the data even after averaging in space ar@lS0 one of our main results giving molecular information on
time as in Fig. ). However, under rapid shearing, a large the stress overshoot under rapid shearing.
fraction of active spots with relatively large nonbonded in- [N real long chain systems, the ratig/ 7z~ N/N, can be
teractions become bent, evidently indicating the existence of€'Y large. Hence, in shear flow, there can be three charac-
obstacles for the chain motion. Remarkably, the active spotifistic shear regions[7] given by () y<m, (i)
in the quiescent and sheared cases in Fig. 5 and 7 coincida <7Y<7g, and (i) y>r,. Nonlinear shear effects
with a large probability~2/3). We claim that a large frac- €merge in the region§i) and(iii), while the linear response
tion of such obstacles arise from entanglements preexistingi€ory in terms ofG(t) in Eq. (11) is valid only in the region
even before application of shear. However, a few bends and). In our study, the intermediate regidii) is not well-
hot spots in Fig. 7 are not detected by the visualizatiordefined, but the calculated overshoot and undershoot relax-
method in Fig. 5. This suggests that some hot spots from ou@tions in Fig. 9[in the region(iii)] resemble those in the
method may not represent entanglements. experimentg6,27,2§.

We have detected discrete obstacles in the chains. In the
future we should examine how they are related to the con-

cepts of tubes in the reptation thed3~5,11. We mention ACKNOWLEDGMENTS
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primitive paths[8]. This work was supported by Grants in Aid for Scientific
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